

Dynamic Industrial Policy

Michael Peneder

Austrian Institute of Economic Research (WIFO)

APRC, Stanford University 2015-06

Outline

- Competitiveness
 - Krugman's critique
 - The ice-berg model
- De vs re-industrialization
 - Structural change
 - Induced value added chains
 - Industrial policy paradox
- Dynamic industrial policy
 - Multiple 'faces'
 - From **rationalities of failure** ...
 - towards the ability to evolve!

I. Competitiveness

- Paul Krugman (MIT Press, 1996)
 - "So let's start telling the truth: competitiveness is a meaningless word when applied to national economies. And the obsession with competitiveness is both wrong and dangerous"
- Main arguments
 - Illusion of conflict, but trade is no zero-sum-game
 - Domestic spending has larger impact than negative terms of trade effects
 - In the long run, wages always rise with productivity ➤ low wages indicate low competitiveness!

Competitiveness A natural concern

- Competition arises from **scarcity**, e.g. of
 - **Resources** (capital, labour/skills, raw materials)
 - Access to markets (EU integration; international trade agreements; transport)
 - **Knowledge & competences** (seeking rents from high-value production)
- Do these scarcities matter only for individual firms?
 - Sure, enterprises are at the core, but e.g.
 - relative abundance of inputs affect industrial location
 - differences in productivity and industrial structure affect aggregate income and the standards of living!

- Policy must define the preferences and constraints to account for interdependencies with other goals of society, e.g.
 - Social cohesion
 - Sustainable environment
- Openness: the very notion of "competitiveness" implies the willingness and ability to face competition, being domestic or from abroad
- Focus on productivity: the objective is to raise real incomes, not lower wages !

Competitiveness The 'ice-berg' model

z.B. Entrepreneurship, sense of achievement, collective goods, solidarity, ethics

II. De- vs re-industrialization

- Driver of technological change
 - Corporate expenditures on R&TD ca. 4x higher than value added share (EU, USA, Japan, Südkorea)
- **Productivity growth** is above average
- Wages are above average (for comparable level of educational attainment)
- Carrier for indirect **trade of services**
 - Share in extra-EU Value Added Exports: services 57% vs. manufacturing 37% (share of services in gross exports: 33%)
 Source: Stoellinger et al. (2013)

Manufacturing share in GDP Triade, 1970-2012

Source: UN National Accounts Main Aggregates Database

NB: EU 28: Aggregate without LUX, CYP, MLT; EU North West: AUT, BEL, GER, DEN, FIN, FRA, GBR, IRE, NDL, SWE; EU East: BGR, CZE, EST, HUN, LTU, LVA ,POL, ROM, SVN, SVK; EU South: HRV, ESP, GRC, PRT, ITA

Manufacturing share in GDP Emerging countries, 1970-2012

Source: UN National Accounts Main Aggregates Database

De- vs re-industrialization Manufacturing share in GDP

Year	USA	EU28	Germany	UK	Japan
2000	15,3%	18,5%			
2012	12,3%	15,4%			

Year	China	South Korea	India	Mexico	Bresil
2000					
2012					

- Income elasticity of demand
- Differential productivity growth
- Competitive advantage
 - Comparative advantage & dynamic specialisation (economies of scale, learning, clusters, etc.)
 - Global value chains
 - Ambivalent impact of **rising incomes**
 - Increased wage pressure on labour intensive production
 - Better support of knowledge-intensive, complex production (demand, education, complementary services and institutions, etc.)

Demand

EU – share of manufacturing in ...

Source: WIOD, WIFO calculations

Relative price changes

Ratio of indices (manuf & non-manuf / total)

Source: WIOD, WIFO calculations

Share of manufacturing 2011

Value Added (Industries)

Domestic Final Demand (Goods)

• IVA_{ij}^{kl} = Value added in sector *i* and country *k*, which originates in the final demand of sector *j* in country *l*

- Country: *domestic* **d** vs foreign **f**
- Sector: manufacturing **m** vs non-manufacturing **n**

Value Added	induced by				
	Dome	estic	Foreign		Total
generated in	Manufacturing	Non-	Manufacturing	Non-	
		manufacturing		manufacturing	
Domestic					
Manufacturing	$IVA_{m,m}^{d,d}$	$IVA_{m,n}^{d,d}$	$IVA_{m,m}^{d,f}$	$IVA_{m,n}^{d,f}$	$IVA_{m,m+n}^{d,d+f} = VA_m^d$
Non-	$IVA_{n,m}^{d,d}$	$IVA_{n,n}^{d,d}$	$IVA_{n,m}^{d,f}$	$IVA_{n,n}^{d,f}$	$IVA_{n,m+n}^{d,d+f} = VA_n^d$
Foreign					
Foreign		£ .]	6.6	6.6	
Manufacturing	$IVA_{m,m}^{J,a}$	$IVA_{m,n}^{J,a}$	$IVA_{m,m}^{J,J}$	$IVA_{m,n}^{J,J}$	$IVA_{m,m+n}^{J,a+j} = VA_m^j$
Non- manufacturing	$IVA_{n,m}^{f,d}$	$IVA_{n,n}^{f,d}$	$IVA_{n,m}^{f,f}$	$IVA_{n,n}^{f,f}$	$IVA_{n,m+n}^{f,d+f} = VA_n^f$
Total	$IVA_{m+n,m}^{d+f,d}$	$IVA_{m+n,n}^{d+f,d}$	$IVA_{m+n,m}^{d+f,f}$	$IVA_{m+n,n}^{d+f,f}$	$\sum_k \sum_i VA_k^i$

Industrial Policy Induced Value Added Chains

• VAS (value added share)

WIFO

 $VAS_{m}^{d} = \frac{IVA_{m,m}^{d,d} + IVA_{m,n}^{d,d} + IVA_{m,m}^{d,f} + IVA_{m,m}^{d,f}}{IVA_{m,m}^{d,d} + IVA_{m,n}^{d,d} + IVA_{m,m}^{d,f} + IVA_{m,m}^{d,f} + IVA_{n,m}^{d,f} + IVA_{n,m}^{d,$

• *MIVAS* (manufacturing induced value added share)

 $MIVAS_{(m+n),m}^{(d+f),d} = \frac{IVA_{m,m}^{d,d} + IVA_{n,m}^{d,d} + IVA_{m,m}^{f,d} + IVA_{m,m}^{f,d}}{IVA_{m,m}^{d,d} + IVA_{m,m}^{d,d} + IVA_{n,m}^{d,d} + IVA_{m,m}^{f,d} + IVA_{m,m}^{f,d} + IVA_{n,m}^{f,d} +$

DIVAS (domestically induced value added share)

 $DIVAS_{m,m+n}^{d+f,d} = \frac{IVA_{m,m}^{d,d} + IVA_{m,n}^{d,d} + IVA_{m,n}^{f,d} + IVA_{m,m}^{f,d} + IVA_{m,n}^{f,d}}{IVA_{m,m}^{d,d} + IVA_{m,n}^{d,d} + IVA_{n,m}^{d,d} + IVA_{n,m}^{f,d} + IVA_{m,m}^{f,d} + IVA_{m,m}^{f,d} + IVA_{n,m}^{f,d} + IVA_{m,m}^{f,d} + IVA$

$\succ TEVAS (trade effect on value added share)$ $TIVAS_{m,m+n}^{d+f,d+f} = \frac{(IVA_{m,m+n}^{d,d} + IVA_{m,m+n}^{d,f})(IVA_{m,m+n}^{d,d} + IVA_{m,m+n}^{f,d} + IVA_{n,m+n}^{f,d})}{(IVA_{m,m+n}^{f,d} + IVA_{m,m+n}^{f,d})(IVA_{m,m+n}^{d,d} + IVA_{m,m+n}^{d,f} + IVA_{n,m+n}^{d,f} + IVA_{n,m+n}^{d,f})}$

- *TEVAS* = Wertschöpfungsanteil dividiert durch Anteil an der von Endnachfrage induzierten Wertschöpfung (VAS / DIVAS)
- Trennt Handelseffekte von der Wirkung heimischer Ausgaben f
 ür Industriewaren (Nachfrage- und Preiseffekte)
- Verknüpfung von Input-Output & Aussenhandelsdaten (WIOD)
- Werte von (über/unter) 1 bedeuten einen neutralen (positiven/ negativen) Beitrag zum Wertschöpfungsanteil
- > Ausgewählte Ergebnisse in % des von der eigenen Endnachfrage induzierten Wertschöpfungsanteils 2010 (1995):
 - Österreich: +7% (+4%); Deutschland: +12% (+8%); Finnland: +26% (+19%)
 - **EU: -3% (-1%);** USA: -1% (-2%); Japan: +13% (+6%);
 - China: +4% (-2%); Südkorea: +24% (+5%); Indien: -14% (-3%)

Quelle: Peneder – Streicher (2014)

Income effect Industry share in %, 2010

Nachfrage induziert (DIVAS)

Wertschöpfung (VAS)

WIFO

• USA

• EU Süd

15

Quelle: WIOD, WIFO-Berechnungen

50-

40

30

20-

10

10

Trade effect EU, 2010

Quelle: GGDC, WIOD, WIFO-Berechnungen

Trade effect World, 2010

Quelle: GGDC, WIOD, WIFO-Berechnungen

- If real incomes grow, declining share in final domestic use has systematic, non-reversible causes (below-/above average growth of demand/productivity)
- Reduces also shares in value added and employment
- For individual countries, higher **competitiveness** can raise demand through international trade
- But since all aim for it, the consequence is ...
 - Industrial policy becomes necessary (not to fall behind)
 - Real incomes grow (because of productivity push)
 - De-industrialisation (in terms of nominal income shares) will accelerate!

III. Dynamic Industrial Policy

Industrial Policy

A puzzle of many parts ...

- Innovation policy
- Education policy
- SME policy
- Trade policy
- Competition policy
- State Aid regulation
- Sector regulations
- Infrastructure policy, etc. etc.

Do we need another "Industrial Policy", and what would be distinctive about it?

Competitiveness

Target **productivity** growth (within and between sectors) Target **societal objectives** (e.g., ecology, health)

→ finetune policies to needs of sector; seek dialogue with stakeholders

Structural Change

Target **factors** (technology, education, capital, labour, energy, etc.) → **differential impact on industries**

Target **activities** with high added value \rightarrow **quality upgrade** (within & between industries)

 \rightarrow

Manufacturing

(Tradeable) Services

Agriculture

- Market failure, system failure, government failure,
 ... isn't this an odd way to warrant policy?
 - Strong belief in 'optimal' outcomes as benchmark
 - Rather constraints to policy choices and design
- Towards a dynamic logic of intervention
 - Reason policy by what we aim to achieve
 - Assess strengths and weaknesses of markets vs government as distinct means of economic co-ordination
 - Long for a coherent vision and integrated perspective

- Dynamic industrial policies are public interventions to enhance industrial development, i.e. the growth of real income (productivity) and qualitative change,
 - be it at the level of individual enterprises, industries or the aggregate economy
 - in a **sustainable** manner, and
 - in support of the overall **goals of society**.
- Essentially synonymous with competitiveness policies

Strengths

- Allocative efficiency: selection directed by demand, directly coupled to user's preferences, utility & consumer welfare
- Productive efficiency: strong selection forces discipline on agents; incompetence or corruption tend to be punished rapidly
- **Co-ordination** of decentralised knowledge (supply and demand)
- Fast learning about own comparative (dis-)advantage

Weaknesses

- Market failure (public goods, external effects, asymmetric information, collusion & monopoly, transaction costs)
- Self-organisation is **myopic** (\rightarrow lock-in to local equilibria), and
- on itself **blind** to other societal goals (e.g. income distribution, health, ecology etc.).

Strengths

- Mobilise **resources** (e.g., infant industry; market failures)
- Potential for **purposeful**, planned and directed activities
- Can set/adjust priorities according to overall goals of society
- Weaknesses
 - Agency problem (principal's power is diffuse)
 - **Capture** by interest groups \rightarrow rent-seeking behaviour
 - Leviathan \rightarrow growing administrative burden and control
 - **Crowding-out** of private initiative
 - \blacktriangleright Weak selection \rightarrow allocative & productive inefficiencies

• **Degree of intervention** should depend on

- the economy's capacity for self-organisation → developed economies *need* less IP,
- but also on the quality of public institutions → less mature societies might *want* less IP
- > Apply principle of **opportunity cost**
 - If private markets can do it, don't waste public resources
 - Not every positive effect is good enough!
- Conduct systematic evaluation by independent agencies
- Go for even stronger international co-ordination to avoid escalation of subsidy or trade wars (prisoner's dilemma).

System characteristics

Examples	 Variation Structural change (<i>or</i> purely stochastic) 	Cumulation Time 	Selection Direction
White noise	(+)	-	-
Blind growth	-	+	-
Random walk/drift	+	+	-
Static equilibrium	(+)	-	+
Steady state growth	(+)	+	+
Development (i.e. evolution)	+	+	+

Three pillars

Fitting the pieces

Thank you for your attention!